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Fisher invented ANOVA in the 1920's to partition variance of a single

dependent variable into uncorrelated parts. Having uncorrelated parts makes the

computations involved in ANOVA incredibly easier. This was important before

computers were invented, when calculations were all done by hand, and also were

done repeatedly, to check for calculation errors.

The present paper demonstrates that ANOVA effects in a balanced design

are perfectly uncorrelated. A mathematical proof that the 4 sums-of-squares

partitions (2 main effect, 1 two-way interaction, and error) for a factorial two-way

design are all uncorrelated, i.e., sum exactly to the SOS of the dependent variable

is presented and a small heuristic data set is included to illustrate the proof.



Fisher invented ANOVA in the 1920's to partition variance of a single dependent variable into

uncorrelated parts. Having uncorrelated parts makes the computations involved in ANOVA incredibly

easier. This was important before computers were invented, when calculations were all done by hand,

and also were done repeatedly, to check for calculation errors.

The present paper demonstrates that ANOVA effects in a balanced design are perfectly

uncorrelated. A mathematical proof that the 4 sums-of-squares partitions (2 main effect, 1 two-way

interaction, and error) for a titctorial two-way design are all uncorrelated, i.e., sum exactly to the SOS

of the dependent variable is presented and a small heuristic data set is included to illustrate the proof.

Let A be the independent variable with levels 1,..j,...a and subjects 1,...,i,...,n. For the one

factor case, we can describe the influences responsible for the performance of the ith subject in the
.thj treatment group by writing the ijth response in terms of the sum of (the overall mean performance

of all subjects) and (the difference between the jth treatment mean and the overall mean) and (the

unexplained component of the ith subject's score).

The statistical model for the one factor completely randomized design with fixed effects is given

by

xy= p+(pj p)+ (Xii - pj),

which completely accounts for the ljth response (Kennedy & Bush, 1985).

For ease of notation, let ai=(pj p) and eii = (xii pj), allowing us to rewrite the

model as

(1)
3c1.1
..=p+ai+eii.

Let I. = ii -3 p and X../ = iii ---> pi be the least-squares estimators of the

population parameters in the above model. (Note that indicates that the subscript varies over all
cases whereas the explicit subscript remains fixed. For example, :f.i is the mean of the jth treatment

group over all subjects 1,...,n.) Thus, the worlsi model is given as

(2)
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where aj=(X.i X..) and s-=crX.) Note that a denotes the effect for the jth
1.1 I

a
level of the independent variable A and that Eaj = 0. (The assumption of fixed effects is important

for this result). Mso, recall that ey N ,h),(0,(72).

To generalize to the two-factor case, let A and B be two independent variables with levels

for A, levels 1,...,k,...b for B, and subjects 1,...,i,...,n. Note that the set of all values

xiik, for all i =1,...,n, j =1,...,a and k =1,...,b

can be thought of as a vector with na b entries. For example, suppose n = 2, a = 2, and b = 3.

Then this vector has 2.2.3=12 entries. We write X =(xiik) to stand for the vector having

na.b entries. This is an nxaxb vector, commonly called a tensor, (a tensor can be

conceptualized as a 3-dimensional matrix), whose mean is given by

1 n a b

= nab i=lj=1 k =1

We can now describe and completely account for the y -kth response in a similar manner to

.the one-factor case if th response by generalizing the statistical model in equation (1) to

xiik=p+aj+fik+afijk+eijk.

For ease of notation in writing down the generalized model, we will use the following shorthand:
a

=E.
1=1 j j=1 k k=1

It follows that
n a n b a b n a b

E =EE, E =EE,E =EE, and y =EE5 .

i=lj=1 ik i=lk=1 jk j=lk =1 ijk i=lj=lk =1

2



The least-squares type estimators are now given as

1
(a) = Xiik -+ p,

abn ific

1

(b) Licyk 14 -I

(c) -14 = Lxijk Pk, (d) Xjk = xijk P jkan ij n

Using these estimators, we can define the components of (1)* as

a = (X. fi k = (x..k afi jk =(Xjk Xj. + X...),

and got = (xiik fic) .

Using the estimator Il.. for p and subtracting it from both sides of equation (1)*, we have

(*) xkI =a +flk +afi 1+64.
Y

We will use equation (*) and the least-squans type estimators (a) - (d) to prove the following claim.

Claim: SS(Total) = SS(A) + SS(B) + SS(AB) + SS(Error) where all the SS terms are

Proof:

(**)

uncorrelated.

If we square both sides of (*) and sum over all ijk, we have

E (xiik 2 = E (a + 13k + + eijk)2
ijk ijk

3



(mixed terms) + 2

E ai2 +E flk2 +E )2 E ik2
ijk yk

Eajfik +Ea pf3ik + Eajeyk +Efikafijk
yk yk ijk ijk

+ Efl k eijk +Eat' jkeijk
ijk ijk

It is important to note at this point that Wit can be shown that each of af3, and 1:

is zero, then each of the mixed terms in (**) represents the covariance of two tensors. In general, the

covariance of two tensors U and V is given by

CON4U ,V) =E(uuk tiXviik V ).

Thus, it will suffic to show that each of d, afl, and 1 is zero and that the mixed terms

above is each equal to zero, since U and V are uncorrelated (perpendicular or orthogonal) if and only

if

cov(U. ,V) = 0 .

Subclaim 1: Each of a, aft, and is zero.

I. Consider CY .

1
zi Ea 1

abn yk abn iikk

1 1

abn ijk abn ijk

4
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1 1 v
Lxijk X.ik

abn abn yk

Y... --EY lc X...
ab jk

0.

IV. Consider aft .

1afi = Lap jk = X..k + x...
abn ijk 1 y(abn k

k abnEZ.abn ijk abn abn ijk

Lx.j. +
abJk a j b k

+

0.

Thus, each of -a , afi, and is zero and subclaim 1 is proved.

Note that all of the possible mixed or combination terms of the four components

a j =(X.j. k afi jk jk j. I..k +



and eijk X.jk) from equation (*) are represented in equation (**).

Thus, since each of a, 73, afi, and Z. is zero, now showing each mixed term equal to zero will

consequently show that

alap, ale, Plap, file, and ap_Le.

Subclaim 2: Each of the 6 mixed terms in equation (**) is equal to 0.

I. Consider the first mixed term of (**), Ea ffik .

./Pk = E E E a fik = E Ea E
n a

Ea J Pk

n a b

ijk i=lj=lk=1 i=1j=1 k=1

n a (b
E Ea./ Ecx.k
i=v=1 k=1

b 1na
E Eaf( E ( E Exyk
i=lj=1 k=1 i=lf=1

n a b n a
j E E Exuk

i=lj=1 an k=li=lj=1

n a
= E Eaj(b.t:..

i=lj=1

0.

7 tO
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II. Consider the second mixed term of (**), Ea jafi jk .

n a b n a (b
Ea jail ik = ,: E Ea jaflik = E Eaj )a/6jk)
yk i=lj=lk=1 i=lj=1 k=1

ri a b
= 1 Eai atlfic X. j. .V..k + Y...)I by definition of (*)

i=1j=1 k=1 )

n a b b b b

= E Eaj E x.jk E i".j.- E X..k + E x...
i=v=1 k=1 k=1 k=1 k=1

na n 1 b n b 1 n a b
= E Ea./ E EXiik --,. E E Exuk E E E xiik + b.:f... by (d),(b),(c)

i=lj=1 n k=11=1 un k=1i=lk=1 an
1
=ij= 1k=1

n a
1 b

= EEa{b.t1.--E.-b.f... + b.V...)
J J. bn k=1

bnX..1.
i=V=1

by (b) and (a)

n a b
= E Eai(b.V.i. EX.j.) = i ia i(bx.j. bx.i.)

i=V=1 k=1 i=lj=1

= 0.

III. Consider the third mixed term of (**), E a jeuk .

ijk

n a b a b
Ea .E.k

.1 Y
= E E Ea .64 =I Y E Eaj Eciik

yk i=lj=lk=1 j=lk=1 i=1



a b

E Eaj E(xijk Xjk)
j=lk=1 i=1

a b
E Ea Exiik

j=lk=1 i=1

n

E X k*1
i=1

a b

E Eaj(n-tljk n:Kjk)
j=lk=1

0.

IV. Consider the fourth mixed term of (**), Efikafijk
ijk

EE kale jk F. Lox E afijk
n b

=

n a b

i=1j=1k=1 i=lk=1 j=1
>I3k2flfk
ijk

by definition of (*)

by (d)

iifik
i=1k=1

i(Xjk X. j. X..k + X...)
j=1

( j by definition of (*)

iflk(
i=lk=1

n b a a a
E Efik E Zjk E -EX.k+iX

i=1k=1 j=1 j=1 j=1 j=1

a n
E EXyk

n j=li=1

1 a n 1 n a a
E E Exijk E E E by (d),(b),(c)un j=i =1 an i=lj=lj=1

n b i k ... by (c),(a), (c)= E Efik aTt..k anx.. + ax
i=lk=1 t, an j=1

9
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E Efik(ax..k = E Efik(ax..k
n b n b

i=lk=1 j=1

0.

i=lk=1

V. Consider the fifth mixed term of (**), Efikeijk

n a b a b

Efikeijk = E E Efikeuk = E Eflk Eeijk
ijk i=lj=lk=1 j=lk=1 i=1

a b

E Efik E(xifk --tljk))
j=lk=1 i=1

by definition of (*)

E Efik EXijk >2 X.jk
a b n

= Z,flk(11-Y.jk n-V.jk) bY (d)

a b

j=lk=1 i=1 1=1 j=lk=1

0.

VI. Consider the sixth mixed term of (**), Eafl jouk .

n a b a b n
Eafifkeijk = E E Eafifteijk = E Eafijk Eeijk

i=lj=lk=1 j=lk=1 i=1

a b
E Eafijk(E(Xiik X.fk)) by definition of (*)
j=lk=1 i=1

a b

(E EafljkExijk Tx.jk)
j=lk=1 1=1 1=1

10
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a b

= E Eafijk (nxjk -nX.fk) by (d)
j=l1c=1

0.

Thus, since all mixed terms of (**) equal 0,

E(xiik x...)2 .Ea3 Eaft2fic 6,2jk

yk yk yk uk yk

which is the mathematical equivalent of

SS(Total) = SS(A) + SS(B) + SS(AB) + SS(Error), since each of

a , fi, afi, and is zero.

Consequently, since all possible covariance combinations equal 0,

alfl, alafi, ale, fi_Lafl, file, and Ole .

Thus, the 4 sums-of-squares partitions (2 main effects, 1 two-way interaction, and error) for a

completely randomized factorial two-way design with fixed effects are all uncorrelated.

11
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Appendix A

This appendix consists of an example using a small heuristic data set and calculations illustrating how to

work through the proof..

Example: 18 students, 9 male and 9 female, are distributed randomly among 3 training conditions:

cooperative learning, lecture and control. Let A be the independent variable representing gender and

B be the independent variable representing training condition. This example represents a two-way (2 x

3) balanced design where A has 2 levels and B has 3 levels.

Let Y be the dependent variable representing grade/performance on a 10 point test over the chosen

topic. The following table represents test scores as a function of training condition and gender.

Training Condition Male Female

1) (j = 2)

(k = 1) Cooperative Learning 5 6 7 8 8 9

(k = 2) Lecture 7 9 9 4 5 6

(k = 3) Control 2 3 4 2 3 6

number of subjects per group by gender ( n = 3 ) i = 1, ..., 3

A - gender ( a = 2 ) j = 1, 2

B - training condition ( b = 3) k = 1, ..., 3

ab.n=18



1 nab 1323
X = EXic = LaXiik

abn i=1./.1k=1 18_ i=lj=lk=1

1 3 2 i 3= E E(xy, + xy2 + xy3) = ERx11, x+ xi21)+(xi12 + x122) + (x113 + :23)1
18 i=1.i=1

= 1 (X111

18

+ X121 + X112 + X122 + x113 + x123 ) (X211 + x221

+ (X311 + X321 + X312 4. x322 + x313 + -1C323)

+ x212 + x222 + x213 + x223)

1= -[(5 + 8 + 7 + 4 + 2 + 2)+(6+ 8 + 9 +5+3+3)+(7+9+9+6+4+6)]
18

103
= 5.7222222

18

_ 1

1
X.1. = (52) = 5.7777778

_ 3 3

i=lk=1
1

X.2. = -4(51) = 5.6666667

1 3 3 2 1 3 3

=
10i=lk=ii=1 2,0i=1k=1

1 3 3
= E V(5.7777778 5.7222222) + (5.6666667 5.722222))

1 i=lic =1

3 3

E E (.0555556.0555556) = 0
18 i=ik=1

x..1 = 1(5 + 6 + 7 + 8 + 8 + 9) = (43) = 7.166666667
6

1

X..k = 1 i i Xific X..2 = 47 + 9 + 9 + 4 + 5 + 6) = 1(40) = 6.666666667
6 6
1 1

.K3 = .;-(2 + 3 + 4 + 2 + 3 + 6) =
6

(20) = 3.333333333

13
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taj(
3

07..k = iaj
i=lj=1 k=1 i=lj=1

(7.16666667 -5.72222222)

+ (6.66666667 -5.7222222)

+ (3.33333333 5.72222222)_

= itaj(1.44444447+.94444447 2.38888887)
i=lj=1
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